43 research outputs found

    Sustainable refurbishment for an adaptable built environment

    Get PDF
    The reconsideration of the existing building stock is motivated by society’s efforts towards sustainability and resilience. The building sector has a considerable role to play in doing so. The process of refurbishment is complex, since aspects such as design decisions, existing construction, energy efficiency, and user behaviour need to be considered. The motivation for refurbishing existing buildings is related to environmental, social, and economic aspects of their use or reuse, which are the three core aspects of sustainability. The key environmental motivation is to reduce energy consumption from fossil fuels and related greenhouse gases (GHG) emissions, and to include energy generation from renewables; the key economic motivation is to lessen the cost of energy used for heating, and the key social motivation is to reduce fuel poverty and improve the quality of life and well-being of the occupants.This chapter aims to explain the role of refurbishment of the building stock for sustainability and resilience. Firstly, definitions of the levels of building upgrades are given, and the motivations for refurbishment are discussed. Furthermore, the ecological, economic, and social aspects of refurbishment are deliberated on, together with the importance of the building stock for resilience. Finally, case studies of refurbishment projects are presented, providing insights into different aspects of refurbishment for sustainability and resilience

    Business models for the decarbonation of districts

    Get PDF
    In order to be able to holistically evaluate the expected energy and CO2 performance of the site and to identify optimized infrastructure investment pathways, the master plan will become a dynamic guidepost for the involved stakeholders, a basis for data-supported, collaborative decision making to preserve alignment of the site's infrastructure with shared energy, CO2 and other performance objectives. A promising initiative is to establish Innovation clusters that are user centred initiatives where knowledge production involves user groups affected by sustainable transitions. Those Innovation clusters are ideally formed on well-established business models to secure user engagement and as a framework for the organisation of user involvement in demonstration projects. Typically, there are three important elements that ensure a maximum of impact. We propose to set up (or use existing) innovation clusters, to establish Innovative business environments (innovation clusters) that have the potential for upscaling and replication of District Decarbonization Solutions

    Internet of things for building façade traceability: A theoretical framework to enable circular economy through life-cycle information flows

    Get PDF
    Traceability is considered a crucial requirement to enable Circular Economy (CE). Product and process life-cycledata can facilitate circular asset management preserving the asset’s value over time and reducing resource consumption. Many scholars point out how the loss of traceability data, lacking information reliability, and unstructured data are still barriers to the widespread application of CE. In the building façade sector, an increased interest on traceability is dictated by a growing demand for environmental product certifications. However, these aspects are often limited to collect data at supply chain stage, thus neglecting a huge amount of information produced during the asset service life. To foster an accessible and life-cycle oriented asset traceability, this research investigates the Internet of Things (IoT) as a potentially disruptive technology for sup- porting information management. The objective of this work is twofold: (i) to identify what façade life-cycle information is needed to promote CE and (ii) to clarify the enabling role of IoT in tracking, storing, and sharing such information. Through a scoping review combined with interviews to professionals, a theoretical framework structured on four key elements (stakeholders, information list, information management tools, and IoT) is proposed to fill the literature gap and support façade industry in the circular transition. Further research will have to be conducted to face the digital-physical integration issues and develop business models able to fully exploit traceability information value

    energy:

    Get PDF
    Today, humankind is completely dependent on energy. Energy is indispensable for growth and life on Earth, and it is also of key importance for living comfortably – for heating, lighting, cooling, ventilation, operation of machines and appliances, for transport, etc. The major energy-generating source is the sun, sending the energy to Earth and making life on our planet possible. This energy is free of charge and without negative effects. However, we only know how to use and convert a small part of the solar energy reaching the Earth into other forms of energy necessary to improve the conditions for life and the human comfort.  The production of energy that drives our civilisation still depends heavily on the use of non-renewable fossil reserves. The dependence on coal, oil, and natural gas is a major problem faced by the humankind. Buildings need energy throughout their life cycle, which consists of six stages – extraction of raw materials, production of materials and components, transport sale, construction, operation and, finally, demolition. Measures aimed at reducing the dependence of a building on energy throughout its life cycle may be implemented on at least two levels. The first important decision is to locate a building in the environment in a manner such that it will help improve the living conditions in the building by making use of the natural features of the site:  by proper orientation of the building to facilitate heating and lighting by means of solar energy;  by using the wind to facilitate natural ventilation;  by including vegetation in the external and internal environment to improve the quality of air; and  by observing the relevant distance from the adjacent buildings to prevent the shading effect.  The second important decision in the building design process refers to the selection of materials and building technology. Every stage of the building’s lifecycle calls for a choice that will contribute to the lower energy consumption of the building:  extraction of raw materials – choice of raw materials (timber, stone, earth), as they are not energy-intensive;  production of materials and components – choice of materials whose production requires little energy;  sale of materials and components – choice of materials and components that are produced locally near the construction site and not subject to great transport distances;  construction of the building – choice of building technologies that do not require much energy;  use or operation of the building – the building should be designed in such a manner as to require little energy for heating, cooling, lighting, and ventilation; demolition – the building should be designed in a manner that permits the structure to be disassembled into the basic elements that can be sorted by specific materials and, if possible, reused or recycled. The use of energy in buildings is thus a complex problem, but it can be reduced and alleviated by making appropriate decisions. Therefore, architects face a major and responsible task of designing the built environment in such a way that its energy dependence will be reduced to a minimum, while at the same time being able to provide comfortable living conditions. Today, architects have many tools at their disposal, facilitating the design process and simultaneously ensuring proper assessment in the early stages of building design. The purpose of this book is to present ongoing research from the universities involved in the project Creating the Network of Knowledge Labs for Sustainable and Resilient Environments (KLABS). This book attempts to highlight the problem of energy use in buildings and propose certain solutions. It consists of nine chapters, organised in three parts. The gathering of chapters into parts serves to identify the different themes that the designer needs to consider, namely energy resources, energy use and comfort, and energy efficiency.  Part 1, entitled “Sustainable and Resilient Energy Resources,” sets off by informing the reader about the basic principles of energy sources, production, and use. The chapters give an overview of all forms of energies and energy cycle from resources to end users and evaluate the resilience of renewable energy systems. This information is essential to realise that the building, as an energy consumer, is part of a greater system and the decisions can be made at different levels. Part 2, entitled “Energy and Comfort in the Built Environment”, explain the relationship between energy use and thermal comfort in buildings and how it is predicted. Buildings consume energy to meet the users’ needs and to provide comfort. The appropriate selection of materials has a direct impact on the thermal properties of a building. Moreover, comfort is affected by parameters such as temperature, humidity, air movement, air quality, lighting, and noise. Understanding and calculating those conditions are valuable skills for the designers.  After the basics of energy use in buildings have been explained, Part 3, entitled “Energy Saving Strategies” aims to provide information and tools that enable an energy- and environmentally-conscious design. This part is the most extensive as it aims to cover different design aspects. Firstly, passive and active measures that the building design needs to include are explained. Those measures are seen from the perspective of heat flow and generation. The Passive House concept, which is explained in the second chapter of Part 3, is a design approach that successfully incorporates such measures, resulting in low energy use by the building. Other considerations that the following chapters cover are solar control, embodied energy and CO2 emissions, and finally economic evaluation. The energy saving strategies explained in this book, despite not being exhaustive, provide basic knowledge that the designer can use and build upon during the design of new buildings and existing building upgrades.  In the context of sustainability and resilience of the built environment, the reduction of energy demand is crucial. This book aims to provide a basic understanding of the energy flows in buildings and the subsequent impact for the building’s operation and its occupants. Most importantly, it covers the principles that need to be taken into account in energy efficient building design and demonstrates their effectiveness.  Designers are shaping the built environment and it is their task to make energy-conscious and informed decisions that result in comfortable and resilient buildings

    sustainable and resilient building design:

    Get PDF
    The challenges to which contemporary building design needs to respond grow steadily. They originate from the influence of changing environmental conditions on buildings, as well as from the need to reduce the impact of buildings on the environment. The increasing complexity requires the continual revision of design principles and their harmonisation with current scientific findings, technological development, and environmental, social, and economic factors. It is precisely these issues that form the backbone of the thematic book, Sustainable and Resilient Building Design: Approaches, Methods, and Tools. The purpose of this book is to present ongoing research from the universities involved in the project Creating the Network of Knowledge Labs for Sustainable and Resilient Environments (KLABS). The book starts with the exploration of the origin, development, and the state-of-the-art notions of environmental design and resource efficiency. Subsequently, climate change complexity and dynamics are studied, and the design strategy for climate-proof buildings is articulated. The investigation into the resilience of buildings is further deepened by examining a case study of fire protection. The book then investigates interrelations between sustainable and resilient building design, compares their key postulates and objectives, and searches for the possibilities of their integration into an outreaching approach. The fifth article in the book deals with potentials and constraints in relation to the assessment of the sustainability (and resilience) of buildings. It critically analyses different existing building certification models, their development paths, systems, and processes, and compares them with the general objectives of building ratings. The subsequent paper outlines the basis and the meaning of the risk and its management system, and provides an overview of different visual, auxiliary, and statistical risk assessment methods and tools. Following the studies of the meanings of sustainable and resilient buildings, the book focuses on the aspects of building components and materials. Here, the life cycle assessment (LCA) method for quantifying the environmental impact of building products is introduced and analysed in detail, followed by a comprehensive comparative overview of the LCA-based software and databases that enable both individual assessment and the comparison of different design alternatives. The impact of climate and pollution on the resilience of building materials is analysed using the examples of stone, wood, concrete, and ceramic materials. Accordingly, the contribution of traditional and alternative building materials to the reduction of negative environmental impact is discussed and depicted through different examples. The book subsequently addresses existing building stock, in which environmental, social, and economic benefits of building refurbishment are outlined by different case studies. Further on, a method for the upgrade of existing buildings, described as ‘integrated rehabilitation’, is deliberated and supported by best practice examples of exoskeleton architectural prosthesis. The final paper reflects on the principles of regenerative design, reveals the significance of biological entities, and recognises the need to assign to buildings and their elements a more advanced role towards natural systems in human environments

    The Internet of Things for the circular transition in the façade sector

    Get PDF
    In the façade sector, the ecological and circular transition requires the adoption of new business models that exploit the value of the material as much as possible. In this context, the Internet of Things (IoT) is identified as a potential innovation driver for the widespread use of circular approaches. The aim of the paper is to clarify the role of IoT in enabling five circular business models in the façade sector. The potential benefits of an IoT-based façade system are highlighted through a matrix underscoring the relationship between information produced and key actions to achieve the innovative business models. The research discussion and findings open the debate on the perspective of digitally integrated building components. Architectural Technolog

    Dissemination, Future Research and Education:

    Get PDF
    This booklet is one of three final documentations of the results of the COST-Action TU 1403 ‘ADAPTIVE FACADE NETWORK’ to be published next to the proceedings of the Final COST Conference ‘FACADE 2018 – ADAPTIVE!’ and a Special Issue of the Journal of Façade Design & Engineering (JFDE). While the proceedings and the journal present current scientific research papers selected through a traditional peer review process, these three final documentations have another focus and objective. These three documentations will share a more holistic and comparative view to the scientific and educational framework of this COST-Action on adaptive facades with the objective to generate an overview and a summary – different from the more specific approach of the proceedings and connecting to the first publication that was presenting the participating institutions. The three titles are the following and are connected to the deliverables of the responsible Working Groups (WG): Booklet 3.1 Case Studies (WG1) Booklet 3.2 Building Performance Simulation and Characterisation of Adaptive Facades (WG2) Booklet 3.3 Dissemination, Future Research and Education (WG4) Booklet 3.1 concentrates on the definition and classification of adaptive facades by describing the state of the art of real-world and research projects and by providing a database to be published on COST TU 1403 website (http://tu1403.eu/). Booklet 3.2 focusses on comparing simulation and testing methods, tools and facilities. And finally, Booklet 3.3 documents the interdisciplinary, horizontal and vertical networking and communication between the different stakeholders of the COST-Action organised through Short Term Scientific Missions (STSM), Training Schools and support sessions for Early Stage Researchers (ESR) / Early Career Investigators (ECI), industry workshops, and related surveys as specific means of dissemination to connect research and education. All three booklets show the diversity of approaches to the topic of adaptive facades coming from the different participants and stakeholders, such as: architecture and design, engineering and simulation, operation and management, industry and fabrication and from education and research. The tasks and deliverables of Working Group 4 were organized and supported by the following group members and their functions: – Thomas Henriksen, Denmark ESR/ECI – Ulrich Knaack, The Netherlands Chair (2015-16) – Thaleia Konstantinou, The Netherlands ESR/ECI – Christian Louter, The Netherlands Vice-Chair, STSM Coordinator – Andreas Luible, Switzerland Website, Meetings – David Metcalfe, United Kingdom Training Schools – Uta Pottgiesser, Germany Chair (2017-18) As editors and Chairs, we would like to thank the Working Group members and authors from other Working Groups for their significant and comprehensive contributions to this booklet. Moreover, we sincerely thank Ashal Tyurkay for her great assistance during the whole editing and layout process. We also want to thank COST (European Cooperation in Science and Technology)

    Definition and design of a prefabricated and modular façade system to incorporate solar harvesting technologies

    Get PDF
    The current research presents the design and development of a prefabricated modular façade solution for renovating residential buildings. The system is conceived as an industrialised solution that incorporates solar harvesting technologies, contributing to reducing energy consumption by employing an “active façade” concept. One of the main challenges was to achieve a highly flexible solution both in terms of geometry and enabling the incorporation of different solar-capturing devices (photovoltaic, thermal, and hybrid). Therefore, to be able to provide alternative customised configurations that can be fitted to various building renovation scenarios. Guided by the requirements and specifications, the design was defined after an iterative process, concluding with a final system design validated and adopted as viable for the intended purpose. A dimensional study for interconnecting all the technologies composing the system was carried out. Potential alternative configurations were assessed under the modularity and versatility perspective, resulting in a set of alternative combinations that better fit the established requirements. Complementarily, the system also integrates an active window solution a component that incorporates an autonomous energy recovery system through ventilation. The main outcome is explicated in a highly versatile modular façade system, which gives existing buildings the possibility to achieve Nearly Zero Energy Building requirements

    Challenges for a Positive Energy District Framework

    Get PDF
    This paper presents the key technical and non-technical challenges for the development of a Positive Energy District (PED) framework. It draws on literature, expert reviews and surveys. Initial findings reveal that there are seven primary interacting factors that cascade from the strategic to the specific, or from international ambitions to contextual opportunities (and vice versa). Each is a necessary and integral factor that underpins successful development of PEDs.COST Action CA19126 – Positive Energy Districts European Network (PED-EU-NET
    corecore